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Systematic Elaboration of Trial Function Bases
for the Study of Planar Structures

Isabelle Proust, Bruno Sauviac, Jean-Louis Amalric, and Henri Baudsamibr Member, IEEE

Abstract—This paper presents an integral method in combina- \
tion with Green'’s functions and the boundary-element method to z
characterize a rectangular waveguide with electric or magnetic
walls, loaded with a conductor of arbitrary cross section. The
results provided by this method are in good agreement with
available data in the literature. The modes of this type of wave-
guide are determined in the case of an arbitrarily shaped inner
conductor with no consideration of size. The existence of the TEM
mode has been verified. The modes calculated by this method
are used as numerical basis functions in other applications.

It is shown that they can be used to determine the resonant fr
frequencies of a metallic patch or the input impedance of a planar
antenna fed by a coaxial line. In this last case, the theoretical
results are confronted with the experimental results. @

wy

Index Terms— Antenna theory, boundary-element method,
coaxial waveguides, electromagnetic fields, Green’s functions,
integral equations, microstrip antennas, propagation.

Fig. 1. General structure.
I. INTRODUCTION

HE cutoff wavenumbers or cutoff frequencies of First, the theory is exposed. Obtained results are in good
T rectangular waveguide loaded with an inner conductg@reement with those available in the literature. The inner
were calculated in many studies [1]-[3], by using differerffonductor is then either a cylinder with small radius or of
methods. triangular or hexagonal shape. In any case, the evaluation of

The method of partial regions [1] allowed the cutoff frelOngitudinal field components is presented. .
quencies of a rectangular waveguide with corner ridges to T he determination of cutoff wavenumbers and the longitu-

be determined. Giner [2] used the cutoff frequencies 0plinal components, or HZ_ allows numerical basis _functions

a circular coaxial to determine the cutoff frequencies of Lat can be used to describe the electromagnetic fields in other
square coaxial having the same circumference. Swaminatfiplications to be created. Using _these basis fupctlons, we have
[4] located the cutoff wavenumbers of a waveguide Witﬁalculated the resonant frequencies of a metallic patch and the

arbitrary cross section with the help of the current density dAPUt impedance of a planar antenna fed by a coaxial line.

the inner conductor. However, the calculation of the current
density becomes difficult when the inner conductor has small Il. THEORY
dimensions [5], which is why some authors use simplifying ap- The general structure analyzed is shown in Fig. 1. It is
proximations [6]. Conciauret al.[7] used the dyadic Green’s composed of a rectangular waveguide loaded with a conductor
function to calculate cutoff wavenumbers and modal fields wf arbitrary shape.
rectangular and circular waveguides, which are perturbed byThe rectangular shield can be either electric or magnetic.
cylindrical conductors. It is more interesting (with the purpose of studying planar

In this paper, an integral method is used to charactetatennas fed by a coaxial) to choose magnetic walls. Indeed,
ize rectangular waveguides with electric or magnetic wallthe magnetic walls could be placed closer to the structure
loaded with a conductor of arbitrary cross section. The cutafian the electric walls [14]; this allows the convergence of
wavenumbers and the amplitude of longitudinal field compehe results to be obtained more rapidly.
nents are determined with the use of Green’s functions andSuch a uniform waveguide generates TE and TM modes.
the boundary-element method [8], [9]. The numerical problethe TEM mode exists as well, but this case will be treated
can be easily implemented on personal computers. separately.

The electromagnetic evolution in this type of waveguide is
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C1 : rectangular The expressions of the different Green’s functions are the
4 closed contour same as those given in [11]. To continue the resolution, TE and
TM modes are considered separately and the boundary con-
ditions are applied, as explained in [11]. Thus, the following

C?2 : arbitrary-shape equations are to be solved:
o closed contour
4n \ OE,

TM modes G(M, M, M,)dl, =0 6

— | eonm) 5= o) ©
Nt unitary normal C : closed contour oG

TE modes / (M, M,)H.(M,)dl, — H.(M,)=0.
c2 OT

(7

Fig. 2. Cross section of guide represented in Fig. 1.

where k.is the cutoff wavenumber. The waves are supposed

to propagate along the-axis with thee=7* term, so The final equation to solve allows the electromagnetic

evolution of the TEM mode to be determined.
k2 =~2 + k2e, The method previously described cannot be used because

] . ] the longitudinal components of the TEM mode are equal to
where v is the propagation constank, is the free-space ,¢rq E. = H. = 0). Thus, the following Poisson’s equation
wavenumber, and,. is the relative permittivity. is used:

The problem is solved by using Green’s functions. The

equation to solve is given by VAV = —g 8
(V24 E2)G(M, M,) = —6(M, M,) (2) and by using the Green’s functions [8]

whereG is the Green's function that verifies the same bound- V(M) = / P G(M, M,)dl, 9)

ary conditions as the longitudinal field compondtor H.. 2 €

M_,is the source point and/is the observation point.  \yhere , is the charge densityy’ is the potential applied on
These equations are associated with boundary conditionsiln inner conductor, and is the dielectric permittivity.

the case of an electric wall, the conditions are

E. =0 IIl. NUMERICAL RESOLUTION
and Equations (6), (7), and (9) are solved by the Galerkin’'s
O0H, —0 3) method and the application of the boundary-element method.
on The use of these methods leads to a homogeneous matrix
In the case of a magnetic wall (dual of electric wall), th8YStem[A][z] = 0 for (6) and (7) and to an inhomogeneous
conditions are matrix system A][x] = [B] for (9). The trial functions chosen
are normalized step functions. Equations (6) and (7) can be
OF., 0 written under the following form:
on N
and TM modes > OF, (M) // GM;, M) dl; =0
H. =0. (4) =1 o NG
(10)
The combination of (1) and (2) allows one to obtain the N . N
second Green'’s identity TE modes » 1 H.(M;)+ Y H.(M))
j=1 j=1
OF. oG
E on (Mo) % (Mlv MJ)
F=— | GIM,M,) .° dl, // —L————dl;dl; =0
HZ /c zHZ (Mo) T \/d_z\/di‘]
n .
© Vie{l,---,N 11
+ [ 29 (g B (Mo) g (5) e o
. On, Y HL (M) T where N represents the number of segments on the contour

C2, andd; is the length of theth segment.

where c is a closed contour and is the normal vector, as The presence of the coefficient 1/2 in (11) is due to
indicated in Fig. 2. the fact that the Green'’s function is defined on a domain

The resolution of the problem then corresponds to sol@rger than that where the second Green’s identity is applied.
the Green’s second identity. The Green’s function is chos&heoretically, on the discontinuity contoWr2 (see Fig. 2)
so that the boundary conditions (3) and (4) are automaticatlye Green'’s function varies abruptly from the value 1 in the
satisfied on the contour'l, which then allows simplification dielectric to the value 0 in the metal. Whereas in practice, this
of the problem. function is continuous and presents oscillations on both sides
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Fig. 3. (a) Convergence of the cutoff wavenumber of the first TM mode: / b d
¢ =125 mm,d = 10 mm,a¢ = 2.5 mm, b = 4 mm. (b) Convergence of %
the cutoff wavenumber of the second TE mode= 12.5 mm, d = 10 mm,
a = 2.5 mm,b =4 mm. - " >

Cutoff wavenumbers of a rectangular coaxiat: 12.5 mm,d = 10

of the discontinuity (Gibbs’ phenomenon). To approach th%,%;’t =25 mmb=4mm,

physical reality, the abrupt change of the function from 1 to
0 is avoided by considering that a middle state exists which ) )
takes the value of 1/2 [11]. that is searched for. The corresponding eigenveaiorould
In these systems, the unknowns are the cutoff wavenumbitgn be calculated.
k. and the amplitudes of th8E, /dn and H._functions on The obtained results show that only the least-squares method

each segment of the contoGr2. gives systematically good results for the vectdr This
The following two methods of numerical resolution werd/€ctor (set of0E./d,) ; or of H.);) represents the unknown
tested. amplitudes ofE, or H, on each segment of the discontinuity

1) Direct Resolution: The cutoff wavenumbers are deter£ontour C2. _
mined by imposing that the determinant of the matrix of the Yhen the cutoff wavenumbers and the amplitudestiof
homogeneous system should be zero. The rank of the sys@inff- on each segment of the contoGr2 are determined,
to be solved isN. The value of the cutoff wavenumber isthe values ofE. and H. can be obtained at each point of
then injected in the matrix. The resolution method consiside Structure. The transverse components are determined by
of imposing the value to an unknowm; (one of the N application of Maxwell's equations. The three—dimensional
unknowns), to suppress the lineand the columni, and (3-D) representation o&. and . allows us to note that two
finally to solve along with the Cramer’s Method the remainingroperties are verified by showing that: 1) the field is equal
inhomogeneous system that has a rankVot- 1. fo zero in the metallic part and 2) the boundary conditions on
2) Resolution by the Least-Squares Methadd: this case, the discontinuity contou€2 and on the external contodr1l
the homogeneous matrix systei][X] = 0 is solved by are well satisfied.
the least-squares method; it is the minimum of the functional NOW, let us examine the case of the TEM mode.
X'A'AX that is searched for. This form is accompanied EQuation (9) is written under the following form:
by the conditionX*X = 1. Thus, the following equality is

N
obtained: Temmode Vi = Z Pi // wdli dl;
t o1 © r \/d_l\/dj
AAX = )\minX J

vie{l,---,N} (12)
where Ayin is the minimum eigenvalue oft*A and X is
the eigenvector associated to this eigenvaltieepresents whereV, is the potential applied on the contoyr; is the
the transpose operation). A cutoff wavenumber sweep dearge density/V is the number of segments on the contour
applied to obtain the minimum eigenvalue. For each cutaff2, andd; is the length of theth segment.
wavenumber, the minimum eigenvalue of the matrxA In the case of the TEM mode, the unknowns are the values
is determined. Among these eigenvalues, we only keep tbep; on each segment. When these data are calculated, the
smallest. The corresponding cutoff wavenumber is the solutipptential at each point of the structure is determined. The
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Fig. 5. (a) Longitudinal componerf. (vector X calculated with the least-squares methady= 12.5 mm,d = 10 mm,a = 2.5 mm, b = 4 mm. (b)
Longitudinal componen£, (vector X calculated with the Cramer's Method):= 12.5 mm,d = 10 mm, a = 2.5 mm, b = 4 mm.

application of the relationE = —VV allows us to obtain  In order to validate the method, the results are compared
the electromagnetic field. with those obtained by Swaminathan [4] in the case of a
rectangular coaxial. Fig. 4 shows the good agreement between
values of the cutoff wavenumbers of the first TE and TM
modes determined by our method and by Swaminathan’'s
. approach. To determine the first cutoff wavenumber of the
A. Rectangular Coaxial TE or TM modes, 10 s is sufficient by using a PC-486.

First, the convergence of the cutoff wavenumber as aFig. 5(a) and (b) shows the evolution of tie field for
function of the number of segments on the contol® (see a given mode and Fig. 6(a) and (b) shows those of khe
Fig. 2) and the number of pairsn{ n) in the series of the field. In Figs. 5(a) and 6(a) the vect® was calculated with
Green'’s function [11] is realized for two methods of resolutiorthe least-squares method, while in Figs. 5(b) and 6(b) it was
with the results presented in Fig. 3(a) and (b). These studissculated with the help of the Cramer's Method. The initial
were carried out for a rectangular coaxial waveguide whogaposed conditions are satisfied only if (10) and (11) are
dimensions are indicated in Fig. 3(a) and (b). Fig. 3(a) presestdved with the least-squares method. One of the steps of
the convergence of the first TM mode and Fig. 3(b) thime “direct method” consists of solvingA-equations system
convergence of the second TE mode. The convergence studid N unknowns. One of these unknowns is equal to 1,
are presented for only one method. It is obvious that tlend if this unknown has a physical value close to zero, a
convergence of the cutoff wavenumber is obtained in the sa@nsiderable error occurs in the field calculation—which is
way for the two methods—the matrix is the same for the twwhy the obtained field could have no physical reality.
methods, but the numerical treatment is different. Fig. 3(a) andThe method was also applied in the case of a magnetic
(b) allows us to observe that the convergence is obtained &rield. A representation of the fields, and H. is given in
20 segments and 4000 pairg,(n). Fig. 7(a) and (b).

IV. RESULTS
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(b)

Fig. 6. (a) Longitudinal componer. (vector X calculated with the least-squares methad}= 12.5 mm,d = 10 mm,a = 2.5 mm,b = 4 mm. (b)
Longitudinal componenf{. (vector X calculated with the Cramer's Method):= 12.5 mm,d = 10 mm, a = 2.5 mm,b = 4 mm.

B. Case of Small-Radius Cylindrical Conductor C. TEM Solution

When the contou€2 is a circle of small radius, the results If the shield of the waveguide represented in Fig. 1 is
given by our method are compared with those obtained byekectrical, then the TEM mode exists because the structure
perturbation method [10]. These results are presented in FigisSmade up of two distinct conductors. Let us now consider a
In this case (cylinder of small radius), two remarks could b&aveguide whose shield is magnetic. In this case, (12) also has
added. Fig. 9(a) shows the evolution of the determinant of thesolution that looks like a TEM mode. This solution has no
matrix of the system in the case of the TE modes. phkes physical signification, but nevertheless, when the modes of the
(values ofk. such that the denominator of the Green'’s functiostudied structure are used as basis functions, it is shown in [14]
is equal to 0) anaeros(values ofk. such that the numeratorthat this solution must be present in the modal decomposition.
of the Green’s function is equal to 0) are very close, or are Fig. 10(a)-(c) show the evolution, respectively, of the po-
practically the same; the TE modes behave as if there wereteatial, theE,and £,components in the case of a rectangular
metal in the structure, so they are not perturbed by the inriener conductor and electric shield.
conductor. Fig. 9(b) shows the evolution of the determinant
of the system matrix in the case of the TM modes. That is o
the first mode which is the more perturbed. The higher ordgr Structures of Original Shape
modes are much less perturbed. These remarks confirm thaDeveloped software allows us to characterize structures in
the more the inner conductor is small, the more the structushich the conductor has an arbitrary shape. Fig. 11(a)—(d)
looks like an empty waveguide. show the evolution of thet, and H, field in the case of
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Fig. 7. (a) Longitudinal componenk. magnetic walls:c = 12.5 mm,d = 10 mm, « = 2.5 mm, b = 4 mm. (b) Longitudinal component .
magnetic walls:c = 12.5 mm,d = 10 mm, ¢ = 2.5 mm, b = 4 mm.
-, V. APPLICATIONS

607 %|---er |4

A. Calculation of the Resonance Frequency of a Patch

The studied structure is presented in Fig. 12(a). It is a
dielectric substrate with one metallic face, and on the upper
side, a metallic patch is placed. Here, the purpose will be to
determine the resonant frequencies of this structure.

Ko Yoo - . In order to do this calculation, the structure is placed in
‘ a rectangular box as indicated in Fig. 12(b). The structure
is then composed of three parts: Part (l) is a rectangular
empty waveguide with no top shield, Part (lll) is a piece
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My of rectangular waveguide filled with a dielectric, and Part
2-005 s o s (; 0’75 58 0585 0’9 P X (Il) is the patch plane. The basis functions of the guides
T U xe e () and (Il) are the modes of a rectangular waveguide.

fo s C <on bet thod and i rba thThe test functions of Part (Il) are determined numerically

1g. o. omparison between our method an e perturpation me H :

e = 00 mm.d = 45 mm. 2. — 45 MM, g = 9 mm, r = 2.7 mm. Wlth the help_ of the prewou_sly exposed method. Indeed, th_e

Solid and dashed lines: our method, symbols: Davidovitch [10]. interface (I1) is a cross section of the waveguide presented in
Fig. 1.

a triangular inner conductor for the electric shield [Fig. 11(a) The continuity relations of the tangential components of

and (b)] and magnetic shield [Fig. 11(c)—(d)]. the electric and magnetic fields should be verified on each
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Fig. 9. (a) Evolution of the determinant TE modes small-radius cylinder
conductor:¢c = 125 mm, d = 95 mm, . = 58 mm, y. = 44 mm, )

r = 0.635 mm. (b) Evolution of the determinant TM modes small-radius
cylinder conductore = 125 mm, d = 95 mm, . = 58 mm, y. = 44 mm,
r = 0.635 mm.

discontinuity [between Parts (I) and (Il) and Parts (ll) and
(IIN]. The parts of waveguides (1) and (IIl) are represented by
operator admittance. The electric field in the plane (II) and the
current densities on both sides of this plane are employed [13]. (c)

The use of the Galerkin's method leads to a homogeneqys 19 (a) potential: TEM mode. (b) Componeht: TEM mode. (c)
matrix system. The resonant frequencies are determined dwmponentE,: TEM mode,c = 125 mm,d = 95 mm, a = 25 mm,
imposing that the determinant of this matrix should be equaF 19 mm, er = 2.2 electric walls.

to zero. This method has been detailed in [13], [14].

The results obtained in this way are compared with the
corresponding data in the literature [12]. Fig. 13(a) shows tll?e
good agreement between the values obtained with the hel@he studied structure is presented in Fig. 14. The metallic
of the two methods. Fig. 13(b) shows the evolution of thgatch is placed on a dielectric slab and it is fed by a coaxial
determinant around the resonant frequency. line.

Input Impedance of a Planar Antenna Fed by a Coaxial Line
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Fig. 11. (a) E. component: electric walls. (b, component: electric walls. (CE. component: magnetic walls, and (dj. component: magnetic
walls, ¢ = 300 mm, d = 290 mm, a = 60 mm.

This paragraph shows that the method previously exposed
allows us to determine the input impedance of the planar
antenna. @
As done above, the antenna is placed in a rectangular box
GV

(see Fig. 15). The structure is also composed of three parts.
Parts (1) and (I1) are the same as those described in the previous I,
section. Part (lll) is a rectangular guide of heightontaining
a dielectric and loaded by a metallic cylinder, similar to the
waveguide represented in Fig. 1. The basis functions of this
part of the guide are so determined. oo
As noted previously, the continuity relations of the tangen-
tial components of the electric and magnetic fields should be
verified on each discontinuity. The magnitudes as admittance
operator, current density, and electric field (chosen as trial
function) are also used. In this case, the use of the Galerkin’s 4))
method leads to a nonhomogeneous matrix system. The right-
hand side (RHS) of this equation contains the influence of the

antenna excitation. The input impedance is obtained using a @
variational form explicated in previous papers [13], [14]. (I
Fig. 16 shows the input impedance of the structure. The
patch antenna is rectangular and its dimensions are given in g 11
Fig. 16. Good agreement can be noted between our results
and the measured data. (®)

Fig. 12. (a) Patch deposed on a dielectric. (b) Patch deposed in a case.
VI. CONCLUSION

An integral method combined with Green’s functions anthe rectangular waveguides with an electric or magnetic shield
the boundary-element method has been used to characteloaeled with an inner conductor of arbitrary shape.
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The method has been validated by comparison between td
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Fig. 16. Input impedance of a rectangular microstrip patck: 125 mm,
d =95 mm,a =25 mm,b =19 mm, h = 2.28 mm, e,, = 2.2. Solid lines

(computed results), dashed lines (measured results).

The determination of modes in such a structure allows
us to generate a numerical basis of functions in which the
Fig. 14. Planar antenna loaded by a coaxial line. (a) Perspective view. @bctromagnetic field can be represented.
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