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Abstract—This paper presents an integral method in combina-
tion with Green’s functions and the boundary-element method to
characterize a rectangular waveguide with electric or magnetic
walls, loaded with a conductor of arbitrary cross section. The
results provided by this method are in good agreement with
available data in the literature. The modes of this type of wave-
guide are determined in the case of an arbitrarily shaped inner
conductor with no consideration of size. The existence of the TEM
mode has been verified. The modes calculated by this method
are used as numerical basis functions in other applications.
It is shown that they can be used to determine the resonant
frequencies of a metallic patch or the input impedance of a planar
antenna fed by a coaxial line. In this last case, the theoretical
results are confronted with the experimental results.

Index Terms— Antenna theory, boundary-element method,
coaxial waveguides, electromagnetic fields, Green’s functions,
integral equations, microstrip antennas, propagation.

I. INTRODUCTION

T HE cutoff wavenumbers or cutoff frequencies of
rectangular waveguide loaded with an inner conductor

were calculated in many studies [1]–[3], by using different
methods.

The method of partial regions [1] allowed the cutoff fre-
quencies of a rectangular waveguide with corner ridges to
be determined. Grüner [2] used the cutoff frequencies of
a circular coaxial to determine the cutoff frequencies of a
square coaxial having the same circumference. Swaminathan
[4] located the cutoff wavenumbers of a waveguide with
arbitrary cross section with the help of the current density on
the inner conductor. However, the calculation of the current
density becomes difficult when the inner conductor has small
dimensions [5], which is why some authors use simplifying ap-
proximations [6]. Conciauroet al. [7] used the dyadic Green’s
function to calculate cutoff wavenumbers and modal fields in
rectangular and circular waveguides, which are perturbed by
cylindrical conductors.

In this paper, an integral method is used to character-
ize rectangular waveguides with electric or magnetic walls,
loaded with a conductor of arbitrary cross section. The cutoff
wavenumbers and the amplitude of longitudinal field compo-
nents are determined with the use of Green’s functions and
the boundary-element method [8], [9]. The numerical problem
can be easily implemented on personal computers.
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Fig. 1. General structure.

First, the theory is exposed. Obtained results are in good
agreement with those available in the literature. The inner
conductor is then either a cylinder with small radius or of
triangular or hexagonal shape. In any case, the evaluation of
longitudinal field components is presented.

The determination of cutoff wavenumbers and the longitu-
dinal components or allows numerical basis functions
that can be used to describe the electromagnetic fields in other
applications to be created. Using these basis functions, we have
calculated the resonant frequencies of a metallic patch and the
input impedance of a planar antenna fed by a coaxial line.

II. THEORY

The general structure analyzed is shown in Fig. 1. It is
composed of a rectangular waveguide loaded with a conductor
of arbitrary shape.

The rectangular shield can be either electric or magnetic.
It is more interesting (with the purpose of studying planar
antennas fed by a coaxial) to choose magnetic walls. Indeed,
the magnetic walls could be placed closer to the structure
than the electric walls [14]; this allows the convergence of
the results to be obtained more rapidly.

Such a uniform waveguide generates TE and TM modes.
The TEM mode exists as well, but this case will be treated
separately.

The electromagnetic evolution in this type of waveguide is
ruled by the Helmholtz’s equation

(1)
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Fig. 2. Cross section of guide represented in Fig. 1.

where is the cutoff wavenumber. The waves are supposed
to propagate along the-axis with the term, so

where is the propagation constant, is the free-space
wavenumber, and is the relative permittivity.

The problem is solved by using Green’s functions. The
equation to solve is given by

(2)

where is the Green’s function that verifies the same bound-
ary conditions as the longitudinal field componentor .

is the source point and is the observation point.
These equations are associated with boundary conditions. In

the case of an electric wall, the conditions are

and

(3)

In the case of a magnetic wall (dual of electric wall), the
conditions are

and

(4)

The combination of (1) and (2) allows one to obtain the
second Green’s identity

(5)

where is a closed contour and is the normal vector, as
indicated in Fig. 2.

The resolution of the problem then corresponds to solve
the Green’s second identity. The Green’s function is chosen
so that the boundary conditions (3) and (4) are automatically
satisfied on the contour , which then allows simplification
of the problem.

The expressions of the different Green’s functions are the
same as those given in [11]. To continue the resolution, TE and
TM modes are considered separately and the boundary con-
ditions are applied, as explained in [11]. Thus, the following
equations are to be solved:

TM modes (6)

TE modes

(7)

The final equation to solve allows the electromagnetic
evolution of the TEM mode to be determined.

The method previously described cannot be used because
the longitudinal components of the TEM mode are equal to
zero ( ). Thus, the following Poisson’s equation
is used:

(8)

and by using the Green’s functions [8]

(9)

where is the charge density, is the potential applied on
the inner conductor, and is the dielectric permittivity.

III. N UMERICAL RESOLUTION

Equations (6), (7), and (9) are solved by the Galerkin’s
method and the application of the boundary-element method.
The use of these methods leads to a homogeneous matrix
system for (6) and (7) and to an inhomogeneous
matrix system for (9). The trial functions chosen
are normalized step functions. Equations (6) and (7) can be
written under the following form:

TM modes

(10)

TE modes

(11)

where represents the number of segments on the contour
, and is the length of theth segment.

The presence of the coefficient 1/2 in (11) is due to
the fact that the Green’s function is defined on a domain
larger than that where the second Green’s identity is applied.
Theoretically, on the discontinuity contour (see Fig. 2)
the Green’s function varies abruptly from the value 1 in the
dielectric to the value 0 in the metal. Whereas in practice, this
function is continuous and presents oscillations on both sides
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(a)

(b)

Fig. 3. (a) Convergence of the cutoff wavenumber of the first TM mode:
c = 12:5 mm, d = 10 mm, a = 2:5 mm, b = 4 mm. (b) Convergence of
the cutoff wavenumber of the second TE mode:c = 12:5 mm, d = 10 mm,
a = 2:5 mm, b = 4 mm.

of the discontinuity (Gibbs’ phenomenon). To approach the
physical reality, the abrupt change of the function from 1 to
0 is avoided by considering that a middle state exists which
takes the value of 1/2 [11].

In these systems, the unknowns are the cutoff wavenumbers
and the amplitudes of the and functions on

each segment of the contour .
The following two methods of numerical resolution were

tested.
1) Direct Resolution:The cutoff wavenumbers are deter-

mined by imposing that the determinant of the matrix of the
homogeneous system should be zero. The rank of the system
to be solved is . The value of the cutoff wavenumber is
then injected in the matrix. The resolution method consists
of imposing the value to an unknown (one of the
unknowns), to suppress the lineand the column , and
finally to solve along with the Cramer’s Method the remaining
inhomogeneous system that has a rank of .

2) Resolution by the Least-Squares Method:In this case,
the homogeneous matrix system is solved by
the least-squares method; it is the minimum of the functional

that is searched for. This form is accompanied
by the condition . Thus, the following equality is
obtained:

where is the minimum eigenvalue of and is
the eigenvector associated to this eigenvalue (represents
the transpose operation). A cutoff wavenumber sweep is
applied to obtain the minimum eigenvalue. For each cutoff
wavenumber, the minimum eigenvalue of the matrix
is determined. Among these eigenvalues, we only keep the
smallest. The corresponding cutoff wavenumber is the solution

Fig. 4. Cutoff wavenumbers of a rectangular coaxial:c = 12:5 mm,d = 10

mm, a = 2:5 mm, b = 4 mm.

that is searched for. The corresponding eigenvectorcould
then be calculated.

The obtained results show that only the least-squares method
gives systematically good results for the vector. This
vector (set of ) or of ) represents the unknown
amplitudes of or on each segment of the discontinuity
contour .

When the cutoff wavenumbers and the amplitudes of
or on each segment of the contour are determined,
the values of and can be obtained at each point of
the structure. The transverse components are determined by
application of Maxwell’s equations. The three–dimensional
(3-D) representation of and allows us to note that two
properties are verified by showing that: 1) the field is equal
to zero in the metallic part and 2) the boundary conditions on
the discontinuity contour and on the external contour
are well satisfied.

Now, let us examine the case of the TEM mode.
Equation (9) is written under the following form:

TEM mode

(12)

where is the potential applied on the contour, is the
charge density, is the number of segments on the contour

, and is the length of theth segment.
In the case of the TEM mode, the unknowns are the values

of on each segment. When these data are calculated, the
potential at each point of the structure is determined. The
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(a)

(b)

Fig. 5. (a) Longitudinal componentEz (vectorX calculated with the least-squares method):c = 12:5 mm, d = 10 mm, a = 2:5 mm, b = 4 mm. (b)
Longitudinal componentEz (vectorX calculated with the Cramer’s Method):c = 12:5 mm, d = 10 mm, a = 2:5 mm, b = 4 mm.

application of the relation allows us to obtain
the electromagnetic field.

IV. RESULTS

A. Rectangular Coaxial

First, the convergence of the cutoff wavenumber as a
function of the number of segments on the contour (see
Fig. 2) and the number of pairs (, ) in the series of the
Green’s function [11] is realized for two methods of resolution,
with the results presented in Fig. 3(a) and (b). These studies
were carried out for a rectangular coaxial waveguide whose
dimensions are indicated in Fig. 3(a) and (b). Fig. 3(a) presents
the convergence of the first TM mode and Fig. 3(b) the
convergence of the second TE mode. The convergence studies
are presented for only one method. It is obvious that the
convergence of the cutoff wavenumber is obtained in the same
way for the two methods—the matrix is the same for the two
methods, but the numerical treatment is different. Fig. 3(a) and
(b) allows us to observe that the convergence is obtained for
20 segments and 4000 pairs (, ).

In order to validate the method, the results are compared
with those obtained by Swaminathan [4] in the case of a
rectangular coaxial. Fig. 4 shows the good agreement between
values of the cutoff wavenumbers of the first TE and TM
modes determined by our method and by Swaminathan’s
approach. To determine the first cutoff wavenumber of the
TE or TM modes, 10 s is sufficient by using a PC-486.

Fig. 5(a) and (b) shows the evolution of the field for
a given mode and Fig. 6(a) and (b) shows those of the
field. In Figs. 5(a) and 6(a) the vector was calculated with
the least-squares method, while in Figs. 5(b) and 6(b) it was
calculated with the help of the Cramer’s Method. The initial
imposed conditions are satisfied only if (10) and (11) are
solved with the least-squares method. One of the steps of
the “direct method” consists of solving a-equations system
with unknowns. One of these unknowns is equal to 1,
and if this unknown has a physical value close to zero, a
considerable error occurs in the field calculation—which is
why the obtained field could have no physical reality.

The method was also applied in the case of a magnetic
shield. A representation of the fields and is given in
Fig. 7(a) and (b).
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(a)

(b)

Fig. 6. (a) Longitudinal componentHz (vectorX calculated with the least-squares method):c = 12:5 mm, d = 10 mm, a = 2:5 mm, b = 4 mm. (b)
Longitudinal componentHz (vectorX calculated with the Cramer’s Method):c = 12:5 mm, d = 10 mm, a = 2:5 mm, b = 4 mm.

B. Case of Small-Radius Cylindrical Conductor

When the contour is a circle of small radius, the results
given by our method are compared with those obtained by a
perturbation method [10]. These results are presented in Fig. 8.
In this case (cylinder of small radius), two remarks could be
added. Fig. 9(a) shows the evolution of the determinant of the
matrix of the system in the case of the TE modes. Thepoles
(values of such that the denominator of the Green’s function
is equal to 0) andzeros(values of such that the numerator
of the Green’s function is equal to 0) are very close, or are
practically the same; the TE modes behave as if there were no
metal in the structure, so they are not perturbed by the inner
conductor. Fig. 9(b) shows the evolution of the determinant
of the system matrix in the case of the TM modes. That is
the first mode which is the more perturbed. The higher order
modes are much less perturbed. These remarks confirm that
the more the inner conductor is small, the more the structure
looks like an empty waveguide.

C. TEM Solution

If the shield of the waveguide represented in Fig. 1 is
electrical, then the TEM mode exists because the structure
is made up of two distinct conductors. Let us now consider a
waveguide whose shield is magnetic. In this case, (12) also has
a solution that looks like a TEM mode. This solution has no
physical signification, but nevertheless, when the modes of the
studied structure are used as basis functions, it is shown in [14]
that this solution must be present in the modal decomposition.

Fig. 10(a)–(c) show the evolution, respectively, of the po-
tential, the and components in the case of a rectangular
inner conductor and electric shield.

D. Structures of Original Shape

Developed software allows us to characterize structures in
which the conductor has an arbitrary shape. Fig. 11(a)–(d)
show the evolution of the and field in the case of
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(a)

(b)

Fig. 7. (a) Longitudinal componentEz magnetic walls:c = 12:5 mm, d = 10 mm, a = 2:5 mm, b = 4 mm. (b) Longitudinal componentHz

magnetic walls:c = 12:5 mm, d = 10 mm, a = 2:5 mm, b = 4 mm.

Fig. 8. Comparison between our method and the perturbation method:
c = 90 mm, d = 45 mm, xc = 45 mm, yc = 9 mm, r = 2:7 mm.
Solid and dashed lines: our method, symbols: Davidovitch [10].

a triangular inner conductor for the electric shield [Fig. 11(a)
and (b)] and magnetic shield [Fig. 11(c)–(d)].

V. APPLICATIONS

A. Calculation of the Resonance Frequency of a Patch

The studied structure is presented in Fig. 12(a). It is a
dielectric substrate with one metallic face, and on the upper
side, a metallic patch is placed. Here, the purpose will be to
determine the resonant frequencies of this structure.

In order to do this calculation, the structure is placed in
a rectangular box as indicated in Fig. 12(b). The structure
is then composed of three parts: Part (I) is a rectangular
empty waveguide with no top shield, Part (III) is a piece
of rectangular waveguide filled with a dielectric, and Part
(II) is the patch plane. The basis functions of the guides
(I) and (III) are the modes of a rectangular waveguide.
The test functions of Part (II) are determined numerically
with the help of the previously exposed method. Indeed, the
interface (II) is a cross section of the waveguide presented in
Fig. 1.

The continuity relations of the tangential components of
the electric and magnetic fields should be verified on each
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(a)

(b)

Fig. 9. (a) Evolution of the determinant TE modes small-radius cylinder
conductor:c = 125 mm, d = 95 mm, xc = 58 mm, yc = 44 mm,
r = 0:635 mm. (b) Evolution of the determinant TM modes small-radius
cylinder conductor:c = 125 mm, d = 95 mm, xc = 58 mm, yc = 44 mm,
r = 0:635 mm.

discontinuity [between Parts (I) and (II) and Parts (II) and
(III)]. The parts of waveguides (I) and (III) are represented by
operator admittance. The electric field in the plane (II) and the
current densities on both sides of this plane are employed [13].
The use of the Galerkin’s method leads to a homogeneous
matrix system. The resonant frequencies are determined by
imposing that the determinant of this matrix should be equal
to zero. This method has been detailed in [13], [14].

The results obtained in this way are compared with the
corresponding data in the literature [12]. Fig. 13(a) shows the
good agreement between the values obtained with the help
of the two methods. Fig. 13(b) shows the evolution of the
determinant around the resonant frequency.

(a)

(b)

(c)

Fig. 10. (a) Potential: TEM mode. (b) ComponentEx: TEM mode. (c)
ComponentEy : TEM mode, c = 125 mm, d = 95 mm, a = 25 mm,
b = 19 mm, "r = 2:2 electric walls.

B. Input Impedance of a Planar Antenna Fed by a Coaxial Line

The studied structure is presented in Fig. 14. The metallic
patch is placed on a dielectric slab and it is fed by a coaxial
line.
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(a)

(c)

(b)

(d)

Fig. 11. (a)Ez component: electric walls. (b)Hz component: electric walls. (c)Ez component: magnetic walls, and (d)Hz component: magnetic
walls, c = 300 mm, d = 290 mm, a = 60 mm.

This paragraph shows that the method previously exposed
allows us to determine the input impedance of the planar
antenna.

As done above, the antenna is placed in a rectangular box
(see Fig. 15). The structure is also composed of three parts.
Parts (I) and (II) are the same as those described in the previous
section. Part (III) is a rectangular guide of heightcontaining
a dielectric and loaded by a metallic cylinder, similar to the
waveguide represented in Fig. 1. The basis functions of this
part of the guide are so determined.

As noted previously, the continuity relations of the tangen-
tial components of the electric and magnetic fields should be
verified on each discontinuity. The magnitudes as admittance
operator, current density, and electric field (chosen as trial
function) are also used. In this case, the use of the Galerkin’s
method leads to a nonhomogeneous matrix system. The right-
hand side (RHS) of this equation contains the influence of the
antenna excitation. The input impedance is obtained using a
variational form explicated in previous papers [13], [14].

Fig. 16 shows the input impedance of the structure. The
patch antenna is rectangular and its dimensions are given in
Fig. 16. Good agreement can be noted between our results
and the measured data.

VI. CONCLUSION

An integral method combined with Green’s functions and
the boundary-element method has been used to characterize

(a)

(b)

Fig. 12. (a) Patch deposed on a dielectric. (b) Patch deposed in a case.

the rectangular waveguides with an electric or magnetic shield
loaded with an inner conductor of arbitrary shape.
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(a)

(b)

Fig. 13. (a) Resonance frequency of a rectangular microstrip patch. (b) Variation of the determinant around the resonance frequency.

(a)

(b)

Fig. 14. Planar antenna loaded by a coaxial line. (a) Perspective view. (b)
Cross view.

Fig. 15. Planar antenna deposed in a case.

The method has been validated by comparison between the
results with those available in the literature in the case of
a rectangular inner conductor. This method also allows the
characterization of waveguides in which a conductor is of
small dimensions.

Fig. 16. Input impedance of a rectangular microstrip patch:c = 125 mm,
d = 95 mm, a = 25 mm, b = 19 mm, h = 2:28 mm, "r = 2:2. Solid lines
(computed results), dashed lines (measured results).

The determination of modes in such a structure allows
us to generate a numerical basis of functions in which the
electromagnetic field can be represented.
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